Cerca

1 - Frazione e fattoriale

Verificare la convergenza e calcolare la somma di:
\[ \sum_{n=1 }^{\infty} \frac{n}{\left ( n+1 \right )!} \]
\[ \frac{n}{\left ( n+1 \right )\left ( n \right )\left ( n-1 \right )!}=\frac{1}{\left ( n+1 \right )\left ( n-1 \right )!}\sim \frac{1}{n^{2}} \]
(Richiami sui fattoriali qui.)
\[\sum_{n=1}^{\infty} \frac{1}{n^{2}} \]  Questa serie converge per \[ n\rightarrow +\infty \].
Per il criterio del confronto asintotico converge anche la prima serie.
\[\frac{n}{(n+1)!}=\frac{n+1-1}{(n+1)!}=\frac{n+1}{(n+1)!}-\frac{1}{(n+1)!}= \]
\[ \frac{n+1}{(n+1)(n)!}-\frac{1}{(n+1)!}=\frac{1}{(n)!}-\frac{1}{(n+1)!} \]
Somma parziale= \[ \sum_{k=1}^{n}\frac{1}{(k)!}-\frac{1}{(k+1)!}=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}+...+\frac{1}{n!}-\frac{1}{(n+1)!}=1-\frac{1}{(n+1)!} \]
\[ S=\lim_{n\to\infty } \left ( 1-\frac{1}{(1+n)!} \right )=1 \]

Background Image

Header Color

:

Content Color

: